
Finding Semantic-preserved Representation of

Knowledge in Description Logic Ontologies:

Preliminary Results in RiceDO and TreatO

Phuriwat Angkoondittaphong

Under supervision of ReaLearn Lab

13 Sep 2024

1



Quantum Embedding of Knowledge

for Reasoning



Quantum Embedding of Knowledge for Reasoning

• The core idea of this paper is to represent description logic

(ALC) with complex vector space.

• Namely Σ = Cd where d ∈ N is embedding size.

• TBox is subspace of Cd and ABox is vector in the Cd .

2



Example of description logic
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Example of representing Unary ABox in Cd

Figure 1: How would unary A-Box represent in C3

Simply just give each entity one vector with only a real part.
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Example of Representing Binary ABox in Cd

• Given Alice (VAlice + i0) and Bob (VBob + i0) form a binary

relation (Alice, Bob)

• Then the vector represents the relation between them is

VAlice + iVBob
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Problem formulation

• For implementation, the authors map from Cd to R2d for

make thing easy to calculate.

• They make the real part mapped on indicies 1 to d and the

imaginary part of the vector becomes indices d+1 to 2d of the

vector.

VBob + iVAlice → [

indices 1 to d︷ ︸︸ ︷
V

(1)
Bob,V

(2)
Bob, . . . ,V

(d)
Bob,V

(1)
Alice ,V

(2)
Alice , . . . ,V

(d)
Alice︸ ︷︷ ︸

indices d+1 to 2d

]T

Here’s an example of how to map a pair (Bob, Alice) from Cd → R2d
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Problem formulation (cont.)

• There are 3 things that we need to make them learn

• embedding of the entities xi ∈ Rd → Oi ∈ NO

• embedding of the concepts yi ∈ {0, 1}d → Ci ∈ NC

• embedding of the relations zi ∈ {0, 1}2d → Ri ∈ NR
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Loss terms proposed in QE paper

• Loss: Assertion, Assert predefined rules. eg. unit length

LOi
= (1− x⊤i xi )

2, LCi
= ||yi ⊙ ȳi ||2, LRi

= ||zi ⊙ z̄i ||2

• Loss: Membership, Assert membership of entities

LOi∈Cj
= ||ȳj ⊙ xi ||2, L(Op ,Oq)∈Rk

= ||z̄k ⊙ xpq||2

• Loss: Logical Inclusion, ⊑ operator

LCi⊑Cj
= ||yi ⊙ ȳj ||2, LRi⊑Rj

= ||zi ⊙ z̄j ||2
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Loss terms proposed in QE paper (cont.)

• Loss: Logical Conjunction, ∧ operator

LCi=Cj⊓Ck
= ||yi − (yj ⊙ yk)||2; LRi=Rj⊓Rk

= ||zi − (zj ⊙ zk)||2

• Loss: Logical Disjunction, ∨ operator

LCi=Cj⊔Ck
= ||yi−max(yj , yk)||2; LRi=Rj⊔Rk

= ||zi−max(zj , zk)||2

• Loss: Negation, ¬ operator

LCi=¬Cj
= (y⊤i yj)

2 + (ȳi
⊤ȳj)

2; LRi=¬Rj
= (z⊤i zj)

2 + (z̄i
⊤z̄j)

2

• Loss: Universal Type Restriction, ∀ operator

L∀Ri ·Cj
(yk) = (y⊤k ( 0d Id

0d0d
)zi )

2
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Overall Loss

Overall loss is calculated by adding all loss terms together.

min
xi ,yj ,zk

L

Minimize loss L with respect to x , y , z
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QE Experimental Setup

• Training setup

• ADAM Optimizer with learning rate 10−3

• E2R Loss

• Embedding size = 100

• Dataset

• RiceDO

• TreatO
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Datasets

• RiceDO is Rice disease ontology, containing relationships

between disease, symptoms, and causation.

• TreatO is ontology on how to cure rice disease.

• Both ontologies are written using only Existential Language

(EL) and only contain TBox.

• QE uses ALC and necessary to have ABox1, which makes us

need to drop some loss terms.

1This is probably my misunderstanding the original QE code
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Reduced Loss Terms

Because RiceDO and TreatO are written in EL and due to how we

map the ontology to triples, the loss terms in gray are removed

from equation.

• Loss: Assertion, Assert predefined rules. eg. unit length

• Loss: Membership, Assert membership of entities

• Loss: Logical Inclusion, ⊑ operator

• Loss: Logical Conjunction, ∧ operator

• Loss: Logical Disjunction, ∨ operator

• Loss: Negation, ¬ operator

• Loss: Universal Type Restriction, ∀ operator
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Example of mapping OWL to Triples

The ontology

Figure 2: Example of a restriction

that cannot represent with one

triple.

PDO059 ⊑ (∃RD147.(∃RD155.RD108 ⊓

∃RD156.(RD023 ⊓ RD135)))

→

The generated triples

• (PDO059, subClassOf, N1)

• (N1, onProperty, RD147)

• (N1, someValuesFrom, N2)

• (N2, intersectionOf, N3)

• (N3, rest, N4)

• (N3, first, N5)

• (N5, someValuesFrom, RD108)

• (N5, onProperty, RD155)

• ...

Use alias to represent a group

of things.
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Existing Techniques

All of the existing techniques mentioned here use pykeen’s

implementation, and I also leave all hyperparameters to default

values in pykeen.

• TransE

• ComplEx

• TransH

• DisMult

• ProjE
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Link prediction

• The task that we tackling is link prediction.

• Given a pair of missing head or tail binary A-box, (H,R, ?) or

(?,R,T ).

• The model is expected to find the missing entity (?).

• QE should perform better than others on this task as it

incorporates logical structure into the embedding creation

process.

• Other techniques only tried to minimize the distance between

paired entities without considering any logical structure.
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Evaluation Metrics of Link Prediction

• Mean Rank (↓)
• The average rank of the correct entity.

• Hits@1 (↑)
• The percentage of the correct entity got rank 1.

• Hits@10 (↑)
• The percentage of the correct entity got rank 10 or higher.
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RiceDO Results Numerically

Techniques MR (↓) H@1 (↑) H@10 (↑)
QE 425.14 23.30 25.80

TransE 350.62 4.12 22.24

ComplEx 971.12 0.12 0.47

TransH 50.53 32.82 49.53

DistMult 251.64 26.12 43.18

ProjE 512.61 4.82 22.71

Table 1: RiceDO Results metrics. The best number for each metrics is

written in bold font.
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TreatO Results Numerically

Techniques MR (↓) H@1 (↑) H@10 (↑)
QE 50.78 15.85 16.71

TransE 55.61 9.73 41.15

ComplEx 281.62 0.00 1.33

TransH 10.86 48.23 76.11

DistMult 20.74 42.92 69.91

ProjE 113.27 15.93 35.40

Table 2: TreatO Results metrics. The best number for each metric is

written in bold font.

19



Looking Back

Why are the results of QE worse than those of other techniques?

• The way I convert from ontology to triples convert all of TBox

to ABox.

• Which eliminates the logical structure in the ontology.
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What to expect from QE embeddings

• The head entity embedding (top row) should have a non-zero

value on the same indices as relation embedding for the head

(upper middle row).

• The same applies to the tail entity embedding (lower middle

row) and relation embedding for the tail (bottom row).
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Observations of result QE embeddings

• Green and Pale green are entities, and isSubClassOf is binary

relation in the ontology.

• Pale green isSubClassOf Green is a fact stated in RiceDO

• The entity embeddings should have non-zero value at the

index where their relation is non-zeros.
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Observations of result QE embeddings

• However, this is not always the case.
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Subspace collapses

• There are some of relation embedding, that use the same

subspace, which is example of subspace collapse.

• The original paper solved this problem by adding

regularization terms.
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Potential Future works

• Solve Subspace Collapses

• Employ Abduction

• Generate minimal sets of ABox axioms as a training data.
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