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ABSTRACT

Information on the mosquito population in each area is needed to combat life-

threatening diseases from mosquito vectors. However, the traditional approach of man-

ual counting is labor-intensive, and it is a slow process to assert the size of the popula-

tion manually. There are alternative approaches such as detecting mosquitoes with the

Wingbeat Recorder’s fundamental frequency or with deep learning classifiers. Any cho-

sen method only uses lab-recorded mosquito wingbeat sounds that are less applicable to

realistic operations.

In this paper, the authors explain how they developed noise-robust sound event

detection models for mosquito species and sex, which can be used for automated count-

ing. To create the environmental surroundings with the mosquito present dataset, the

authors overlayed mosquito wingbeat sounds with recorded noises from the natural en-

vironment of mosquitos. This led to a difference in gain factor. The dataset was then

trained with a 1DCNN model with RNN to represent significance in the time series.

The results demonstrated that the proposed model significantly exceeded the baseline

detection performance, achieving a 0.877 F1 score on habitat A and 0.936 on habitat B.

Regarding classification, the proposed model overcame the baseline in habitat B while

it had a lower performance concerning habitat A.

KEYWORDS: SOUND EVENT DETECTION /MOSQUITO CLASSIFICATION
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บทคดัยอ่

ขอ้มูลประชากรของยงุในพืÊนทีÉเป็นสิÉงสาํคญัมากในการหาแนวทางการป้องกนัโรคระบาด
ร้ายแรงทีÉมียงุเป็นพาหะนาํโรค แต่วธีิดัÊงเดิมในการนบัจาํนวนยงุนัÊนใช้เวลาและทรัพยากรมาก ยงั
มีวธีิอืÉนอีกทีÉช่วยประมาณประชากรยงุได้ดีกวา่ เช่น การตรวจจบัยงุดว้ยคลืÉนความถีÉเสียง หรือการ
ใชเ้ครืÉองมือจาํแนกดว้ยการเรียนรู้เชิงลึกในการแยกประเภทยงุ อยา่งไรกต็าม วธีิการส่วนมากนัÊนใช้
เสียงยงุจากสิÉงแวดลอ้มควบคุมทีÉไม่มีเสียงรบกวน เมืÉอนาํไปใชจ้ริงแลว้จึงใชก้ารไดไ้ม่ดีนกั

ในวทิยานิพนธ์นีÊ ผูเ้ขียนไดพ้ฒันา sound event detection model ทีÉสามารถจาํแนกพนัธ์ุ
และเพศของยงุไดดี้บนเสียงรบกวน โดยสามารถนาํไปใชใ้นการประมาณประชากรยงุในพืÊนทีÉได้ ผู ้
เขียนใช้ dataset ทีÉสร้างขึÊนมาโดยการรวมเอาเสียงรบกวนและเสียงยงุเขา้ดว้ยกนั dataset นีÊ มีการ
แบ่งเป็น 2 ส่วนไดแ้ก่ ถิÉนทีÉอยู่ ก และถิÉนทีÉอยู่ ข เพืÉอจาํลองยงุแต่ละสปีชีส์ทีÉมกัอาศยัอยู่ร่วมกนั
ในสภาพแวดลอ้มจริง หลงัจากนัÊนจึงนาํขอ้มูลไปใช้ในการสร้างเครืÉองมือจาํแนกดว้ยการเรียนรู้เชิง
ลึก โดยใชเ้ครืÉองมือ 1DCRNN และมีโครงสร้าง RNN ในการประมวลผลขอ้มูลแบบเวลา ผลลพัธ์
แสดงให้เห็นวา่เครืÉองมือนีÊทาํงานไดดี้กวา่เครืÉองมือเดิมมากเมืÉอใชใ้นการตรวจจบัเสียงยงุ โดยไดรั้บ
F1 score มากถึง 0.877 บนถิÉนทีÉอยู่ ก และ 0.936 บนถิÉนทีÉอยู่ ข ส่วนผลลพัธ์ดา้นการจาํแนกแต่ละ
เพศและสปีชีส์ของยงุแสดงให้เห็นวา่ เครืÉองมือเดิมทาํงานไดดี้กวา่เมืÉออยูบ่นถิÉนทีÉอยู่ ก แต่เครืÉองมือ
ทีÉพฒันาใหม่สามารถทาํงานไดดี้กวา่ในถิÉนทีÉอยู่ ข

37 หนา้
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CHAPTER 1
INTRODUCTION

1.1 Motivation

Vector-borne diseases such as dengue, chikungunya, and yellow fever are all fatal

diseases transmitted by mosquitoes. They pose an essential threat to public health in

tropical countries [2], especially in Thailand where mosquitos are highly populated. It

is an estimated trend that the impact of these diseases will increase with time due to

the change in climate and urbanization [3]. Public health interventions targeting these

diseases are implemented within each country to monitor the efficacy of vector control

initiatives. Accurate information about mosquito vector population density is necessary.

To lessen the impact of mosquito-borne diseases, public health regulators have

been trying to gather more information about the mosquito population and find ways to

control it efficiently. The most traditional method includes installing traps in various

locations and then manually counting and identifying the species and sex of the caught

mosquitoes. The common traps used to catchmosquitoes often use light, heat, odour, and

blood to attract mosquitoes into the deployed area [4]. However, this method is highly

costly and labour-intensive. Each installment of the trap requires more money to buy

equipment, more people to manually install it, and more experts to classify the mosquito

types. This process also has scalability limitations that hinder large-scale monitoring

efforts and can be a bottleneck in timely and effective vector control. Therefore, other

methods have been developed to identify mosquito types more efficiently.

It is known that mosquitoes of different species and sexes often differ in their

wingbeat audio signatures [5] such as frequency. Therefore, many methods of differen-

tiating mosquito sex and species by their wingbeat sounds have been developed widely.

For example, the use of wingbeat frequency [6] use the wingbeat frequency, [7] use

MFCC, and [8] use mosquito antenna characteristics to extract features of each mosquito

type. Nevertheless, following the suggestion that differentiating via frequency may not
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be compelling enough [9] [10], since recent attempts often extract features from the

spectrogram of wingbeat sounds, After that, deep learning models are used to utilize

the image classification framework for spectrogram processing [1] [11]. This process

of utilizing spectrogram in image classification is also widely used in classifying other

animal species, such as birds and insects. However, it has been recently suggested that

spectrograms may not be able to convey some critical differential features [12] [13], so

new methods of using raw wingbeat sound are developed to overcome this problem [14]

[10].

However, accurately estimating mosquito populations and individual species in

the field is compounded by extraneous environmental noise, such as traffic, human ac-

tivity, and other insect sounds, which can obfuscate the distinct wingbeat frequencies

of different mosquito species. Using frequencies to differentiate mosquito types does

not perform well in any noisy environment [15]. This creates a substantial challenge for

current surveillance techniques that must be capable of isolating the unique acoustic sig-

natures of mosquitoes from background noises. Some studies have developed a model

to address noisy environment problems in mosquito sound classification noises [1] [16].

However, the models must perform better or can only do detection tasks. Other research

focuses on using optical sensors to synthesize wingbeat sounds from light fluctuations

[17], but this method works well only on sex classification, not species classification.

In order to detect and classify mosquito species and sex, including background

noises into training data for the model to learn is one promising solution. It also has been

proven to give impressive results in bird classification [18]. Even so, retrieving noisy

mosquito sounds from natural environments is challenging. The traps must be deployed

longer, and trained staff must manually listen to the long recordings to classify them,

increasing the cost financially and prolonging the time. Another approach is synthesizing

noisy mosquito sounds by overlaying mosquito sounds in a noisy environment, making

the data collection process easier and faster. Several types of research show how data

augmentation can reduce overfitting when the retrieved dataset is small and imbalanced

[19], especially in a bioacoustics classification setting [20].

It is essential to obtain comprehensive estimates of mosquito population density

and estimates involving individual species. Addressing this challenge is critical as the
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advent of robust noise-tolerant detection and classification systems would significantly

advance entomological surveillance and, evidently, disease prevention.

Deep learning models addressing this problem are also developed separately be-

tween detectors and classifiers. Many researchers create a model to detect mosquito

presence, then create another model to classify.

1.2 Problem Statement

The current deep-learning model for mosquito detection and classification needs

to be more accurate due to noise pollution from the surrounding environment, ambient

sounds of urban activity, traffic, and other wildlife, mainly insects. This brings up a

critical issue: the current method needs to consider noise interference or evaluate its ro-

bustness against noise interference. This project aims to fill this critical gap by improving

noise robustness.

Moreover, the typical practice of separating the tasks of mosquito detection and

classification further exacerbates these issues. This dichotomy leads to a disjointed ap-

proach where crucial insights into mosquito behaviour and population dynamics are lost,

reducing the effectiveness of vector control. The current project addresses these short-

comings by integrating mosquito detection and classification into a unified process. By

overcoming the limitations of traditional detection and classification, this approach aims

to enable a more accurate and efficient estimation of mosquito populations.

1.3 Objective

To develop a deep learning model that identifies and classifies mosquito pres-

ence, species, and sex from wingbeat sounds. The model should also be robust to noisy

environments.

1.4 Scope of the project

1. This project will use the male and female sexes of five species of mosquitoes that

are often found in Thailand: Aedes aegypti, Aedes albopictus, Anopheles dirus,

Anopheles minimus, and Culex quinquefasciatus

2. This project focuses on the dataset from MIRU (Mahidol-Bremen Medical Infor-
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mation Research Unit).

3. All recordings come from only specific microphone types, including Behringer

ECM8000 and Primo EM172.
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CHAPTER 2
BACKGROUND

2.1 Mosquito Wingbeat

The distinctive frequencies of mosquito wingbeats result from various biological

and environmental factors. Each species has unique physiological traits such as wing

size, body mass, and shape that influence the rate and pattern of their wing flaps. Males

typically exhibit higher wingbeat frequencies due to their generally smaller body sizes

when compared to females [21]. Environmental conditions like temperature and humid-

ity can also modulate these frequencies. As such, the acoustic footprint of a mosquito’s

wingbeat is not merely a byproduct of its flight, but a complex signature shaped by an

interplay of intrinsic species-specific characteristics and external variables.

Table 2.1: An analysis of mosquito wing beat frequencies, Table 1 in Sinka et al.[1]
(2021) presents a detailed comparison of species-specific data under various

environmental conditions [page 6].

Mosquito Species Sex Age (Days) Frequency (Hz)
Ae. Aegypti Male 1 - 10 557 - 600

Ae. Albopictus Male 4 724
An. Arabiensis Male 2 703 ± 8.72
Ae. Aegypti Female 1 - 10 414 - 453

Ae. Albopictus Female 4 544
An. Arabiensis Female 2 435 ± 4.88

2.2 Mosquito data collection

There are two main approaches for collecting the wingbeat sound, including an

acoustic sensor and an optical sensor.

2.2.1 Acoustic sensor

An acoustic sensor is used by simply putting the mosquito in the trap and using

a microphone to capture the acoustic footprint of the mosquito when it flies. However,

there are obvious downsides to this simple method. The noise of the trap is also included
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in the recordings and might affect the system one has been researching. This method has

been adapted and developed in various ways to be fed as training data into the model,

such as transforming the raw signal into a spectrogram and applying wavelet [16] [1]

[22].

A collection of mosquito wingbeat sounds is collected by putting each mosquito

into a small cylindrical container covered by a net. They are then recorded with a Studio

Behringer (Primo EM172) in a mono channel of 24 bits depth with a 96 kHz sampling

rate [21].

The system named LOCOMOBIS (LOw-COst MOsquito BIoacoustic Sensor)

integrates a sensitive microphone with environmental sensors within its architecture [6].

The recorded audio data, containing temperature and humidity readings, are processed

to classify different species and genders of mosquitoes.

Research has shown that even basic mobile phones can sensitively record acous-

tic data specific to mosquito wingbeat sound and critical metadata like time and location

[23]. Researchers have highlighted the ability ofmobile phonemicrophones to record the

wingbeat frequencies of a wide range of medically necessary mosquito species. This ca-

pability enables rapid, non-invasive species identification, substantially advancing field-

based mosquito monitoring.

2.2.2 Optical sensor

Collecting mosquito wingbeat via optical sensor will retrieve data from the fluc-

tuation of light when a mosquito flies by, creating a pseudo wingbeat sound so that it

is not affected by interrupting noises in the background. Using custom-built pseudo-

acoustic optical sensors applies the technique of a phototransistor array that is aligned

with a laser line [9]. When insects move using their wings, they detect light intensity

changes. When mosquitoes flew through the laser beam, their wings partially blocked

the light, creating fluctuations captured by the sensor.

This method breaks the limitations of traditional acoustic sensors such as sen-

sitivity to ambient noise and distance-related sound attenuation. Filtered and amplified

electrical signals from the phototransistor array were recorded as six-hour MP3 files.

Other optical field noises such as reflected light, flying dust, or ambient, can still af-
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fect this method. This limitation makes the approach unreliable for classifying mosquito

species [17].

2.3 Deep-learning

2.3.1 Deep-learning Layer

Convolution Layer

Image processing is a fundamental operation in which a kernel matrix “convo-

lutes” on an image. The result from 2D convolution is versatile, ranging from blur sharp-

ening to edge detection, depending on the kernel. It processes only the local feature of

the image. The model might learn to set the kernel via a backpropagation algorithm

in a deep-learning context. It is a central part of successful image-based deep-learning

models such as VGG family [24], ResNet family [25], and EfficientNet family [26]. It

also has been used in signal-related problems such as Polyphonic Sound Event Detection

(SED) [27], [28], [29].

It also has a one-dimensional counterpart, which is widely known in signal pro-

cessing. The 1D convolution layer has many uses in speaker recognition [30], electro-

cardiogram classification [31], and weak-labeled SED [10].

Recurrent Layer

A recurrent layer is a class of deep-learning layers specifically designed to handle

sequential or time series data as it has the internal memory of the layer. Such layer has

been used in many problems such as machine translation [32], and weather forecasting

[33]. There are many types of recurrent layers, including Long Short-Time Memory

(LSTM) [34] and Gated recurrent unit (GRU) [35].

The combination of the convolution layer and recurrent layer has been used on

SED tasks [27], as they can interpret temporal information [29].

2.4 Spectrogram

A spectrogram is a visual representation of the spectral density of a signal over

time. The use of two-dimensional visualization characterizes this analysis tool. The

frequency is displayed on the vertical axis. Moreover, time is displayed on the horizon-
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tal axis. The third dimension represents the amplitude or power of signals at different

frequencies. It is presented visually using different intensities or shades. Spectrograms

are used primarily to analyze audio signals. This makes it possible to monitor dynamic

changes in the frequency spectrum. It provides valuable insights into the temporal char-

acteristics of various frequency components included in the signal. To create a spectro-

gram, two common steps are used:

Figure 2.1: Example of Spectrogram from Environmental Noise

2.4.1 Fast Fourier Transform (FFT)

In signal processing, Fast Fourier Transform is an advanced algorithm for calcu-

lating Discrete Fourier Transform (DFT) with high accuracy [36]. Complex coefficient

calculations allow the signal to be efficiently decomposed into its frequency components.

2.4.2 Short-Time Fourier Transform (STFT)

Short-Time Fourier Transform divides a time-domain signal into shorter over-

lapping segments, and for each segment, it calculates the Fourier Transform [37]. This

process generates a series of spectra representing the signal’s frequency content at dif-

ferent time intervals.

2.5 Literature review

Achieving efficient remote mosquito surveillance remains difficult, after con-

sidering the findings of many studies on the detection and classification of mosquito
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wingbeats. One of the problem areas is the development of noise-robust models, which

in diverse and unpredictable environmental noise conditions, make these models unreli-

able.

2.5.1 Combination between Detection and classification

Acommon approach uses a pipeline startingwith detection and following by clas-

sification [21]. This approach effectively eliminates extraneous noise and sounds that

can help reduce the classification computation resource. However, it operates under the

often-unmet assumption of flawless detection, which is difficult to achieve in real-world

situations. Another research introduced a unique combination of pre-processing and

deep-learning model to build a mosquito detector from mosquito wingbeat background

noises collected under different environmental conditions [38]. Researchers found that

issues with traditional audio pre-processing techniques and methods such as logmel and

frontend processing have limitations. Sensitivity to variations in incoming audio sig-

nals and the dynamic range of filterbank energy can affect the model’s ability to detect

mosquito wingbeats reliably.

There are recorded wingbeat sounds of three mosquito species: Aedes aegypti,

Culex, and Culiseta, which are used by the Fast Fourier Transform (FFT) to process the

audio data and identify the fundamental frequency of the wingbeats. It is a crucial feature

for species and gender classification [6][9][10].

While the fundamental frequency is widely used and also considered to be the

is an important component when classifying how to differentiate between the kinds of

mosquitoes [39], several studies have shown that it may not be sufficient to separate be-

between mosquito species accurately. The introduction of non-mosquito classification

is an important study that addresses this issue [9]. However, the issue of balancing the

classifier’s computational load with the detector’s sensitivity and crucial features in the

continuous section is lost because the technique does not account for temporal informa-

tion. The loss of essential features limits the applicability of the classification model

and rejects the potential benefits of continuous temporal data in enhancing detection and

classification accuracy. On the other hand, a significant challenge that needs to be ad-

dressed is that insect flight sounds are often sparse and discontinuous in recording due
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to their insect nature.

This research gap highlights whether combining the detection and classification

into an end-to-end model may be more useful and efficient. This model addresses the

need to balance between detection sensitivity and the need to calculate and manipulate

continuous temporal data for detection and classification purposes.

Consequently, this project aims to pioneer the development of an end-to-end

deep-learning model involving spatial and temporal data extracted from raw sound. This

technique is in fulfillment of the principles of SED[29] [40] [27] [41] [42]. Therefore, ap-

plying SED to the model can remain unexplored. Therefore, this project seeks to fill this

gap by adapting the SED technique for mosquito wingbeat sound analysis challenges.

Random augmentations were introduced on the audio samples to help the model

learn to distinguish mosquito buzz from various sounds [38]. This includes using exter-

nal noise sources to train the model which increases its robustness in real-world scenar-

ios where background noise is present. A recent work study used noise simulations for

model evaluation. The challenge with that was how accurately the simulating process

was varied and unpredictable in real-world environmental noise conditions [43]. Two

primary approaches have merged to enhance the robustness of mosquito wingbeat de-

tection and classification of mosquito wingbeat sounds in noisy environments. The first

involves converting rawwingbeat audio to spectrograms by using feature extraction such

as MFCC and fundamental frequency [6][7]. Just recently, deep-learning models such

as 1DCNN and DenseNet121 have been employed [43] [44].

Another approach is data augmentation, which adds more data to the model by

adding noise from the surroundings during the model training process. It works well for

classifying birds [12].

Researchers applied several data augmentation methods such as temporal shift-

ing and the addition of low-amplitude noise. They mentioned the limitation of the Mel

frequency scale and the neglect of phase or temporal fine structure, which can be crucial

for specific bioacoustics tasks. Another existing work used a different data augmenta-

tion technique which involved randomly warping blocks of frequency channels and time

steps in the audio recordings [38]. This technique helps the model be more robust in sep-

arating auditory elements and noise conditions. However, the precision of these noise
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augmentation approaches for mosquito species identification still needs to be explored.

To address this gap, this project aims to develop a method for training deep-learning

models to detect and classify mosquito species and sex from raw wingbeat sound.
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CHAPTER 3
METHODOLOGY

This chapter explained the details of the experiment’s implementation, including

data preparation, noise simulation, problem formulation, model architecture, and train-

ing.

Figure 3.1 illustrates the overall methodology of this project. Given the dataset

from the MIRU lab and Humbug, the authors simulated mosquito sounds on noises by

overlaying wingbeat sounds with environmental sounds. The resulting dataset was used

to train the polyphonic sound event detection model.

+ Noise
NoiseMos

Noise1 Noise2

Mos1 Mos2 Mos3

D =

Noise Simulation

Polyphonic SED model

Model Training

Training set

Figure 3.1: Overall of methodology

3.1 Problem Formulation

Consider the problem to be segment-based Polyphonic SED. An event means

mosquito(es) fly near the microphone to make the sound output audible. The dataset

D = {(xi, yi)}Ni=0 is a collection of the overlayed environmental sounds xi ∈ X with an

event recording matrix yi ∈ Y, where X = [−1, 1]n×c is a sound with n = sr × t data

points, sampling rate sr, duration of t seconds, and c number of audio channels. The
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labels are Y = {0, 1}s×nclasses , a one-hot matrix encode events, where s = t
tseg

number

of segments, tseg duration (in seconds) per segment and ncls number of classes or type of

events. If an event of class cls presents at a segment s, then y[s, cls] = 1 and set to 0 if

an event is absent. This is also a multi-label problem, meaning the events from different

classes may be present simultaneously.

Models will receive input x ∈ X, representing the sound with or without the

event present. It outputs predictions as a matrix ŷ ∈ [0, 1]s×ncls whose values are a

probability of event presence in a specific class and time frame. Then, a threshold thres

separates the event’s presence and absence. If the probability is less than the thres, it

is classified as an absence. If the probability is more than the thres, it is classified as

presence. Since the model may exhibit different outcomes across different classes, the

thres can be adjusted to maximize performance in each class.

3.2 Noise Simulation

Given an environmental sound env ∈ [−1, 1]tenv , a mosquito wingbeat sound

mos ∈ [−1, 1]tmos of class cls at sampling rate sr, a time when the mosquito starts on

environmental sound tstart, a normalize function norm : Rn → [−1, 1]n and a factor to

control the proportion of the wingbeat amplitude G ∈ (0, 1]. Assume tmos ≤ tenv, the

overlayed environmental sound x ∈ X can be calculated using the equation 3.1.

x = norm(w) (3.1)

w[t] =

env[t] +G · norm(mos)[t− tstart], tstart ≤ t < tstart + tmos.

env[t], otherwise.
(3.2)

where j is ranging from 0 upto tmos.

Then, the event is encoded in the one-hot matrix y using equation 3.3.

y[t, cls] =

1, tstart ≤ t < tstart + tmos.

0, otherwise.
(3.3)

To create a dataset, the authors create a collection of the overlayed environmental

sounds D = {(xi, yi)}Ni=0. The xi refers to the i-th overlayed environmental sound, and
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yi i-th is for the event recording matrix.

In Figure 3.2, the mos represents the sound of a wingbeat scaled with the gain

factor G and then added to env, an environmental sound at the time tstart. The label is

also created from this information as shown in Figure 3.3. A section without mosquito

presence will only consist of environment sounds, represented in a red rectangle in the

image. This part is labeled as a matrix filled with 0s. On the other hand, the section with

a mosquito presence is filled with 1s.

env
+

moscls1G×

tstart

tmos

tenv

Figure 3.2: Example of overlaying a wingbeat sound on an environmental sound. The
mosquito wingbeat sound starts on from tstart and ends at tstart + tmos.

ycls1
tstart

tmos

tenv

Absent AbsentPresent

Figure 3.3: Example of the label created from overlaying a wingbeat sound on an
environmental sound. The red rectangle represents the matrix with all zeros, and the
green rectangle represents the matrix with all one, starting from tstart and ending at

tstart + tmos.

3.3 Model Architecture

In this section, the architecture of the baseline model, along with its techniques

and weaknesses are explained. Then an explanation of how the proposed model replaces

parts of the architecture to overcome the baseline’s disadvantages is also mentioned in

this section.
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3.3.1 SEDNet

The authors of this project selected state-of-the-art SED and SEDNet from a base-

line [28]. SEDNet utilizes logmel band energy (lmbe) of the sound as an input feature

of the model that passes through 3 of the 2D CNN blocks, then 2 Bidirectional Gated

Recurrent units (Bi- GRUs) and two fully connected layers with a sigmoid activation

function on the last layer to map the result of the model to range [0, 1] [45] [46]. The

figure of the complete architecture is shown in Figure 3.5.

A 2D CNN block consists of several layers in the following order: 2D convolu-

tion, Batch normalization [47], ReLU activation function, Max pooling 2D, and Dropout

as illustrated in Figure 3.4.

Given a sound with a duration of n seconds, namely x ∈ [−1, 1]sr·n, a logmel

band energy of the sound, lmbe(x), can be calculated by using the following steps. First,

calculate the Short-Time Fourier Transform (STFT) of the sound, denoted x̂ = STFT(x),

and then calculate the energy of each frequency by applying element-wise absolute func-

tion en(x) = |x̂|. Next, transform from linear scale to mel scale, mbe(x) = mel · en(x),

where mel scale is define as mel(f) = 2595 log10(1 +
f
700

) where f is frequency (Hz).

Lastly, apply element-wise natural logarithmic function, lmbe(x) = ln(mbe(x)). There

are also numerous hyperparameters to adjust, such as nfft, hoplen, and mel-band, which

were implied in the equations above.

2D
CNN

2D
CNN
Block

Conv
2D

Drop-
out
Drop-
out

Batch
Norm

Max
Pooling

2D

Figure 3.4: An architecture of 2D CNN block. Activation function omitted.

Utilizing multiple 2DCNN layers, SEDNet can see all sounds and noises in the

data in 2D form, making the frequency of each mosquito visible and easy to differentiate.

However, frequency is only a significant feature in differentiating mosquito sexes and

species since many species have overlapping frequency ranges. Additionally, SEDNet
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2D
CNN

Block

2D
CNN

Block

Input
Waveform

Output
When and which

class
FCFClmbe

Bi
GRU

2D
CNN

Block

Bi
GRU

Figure 3.5: An architecture of baseline CRNN. Activation function omitted.

requires an extraction of mel-band spectrogram (lmbe). As the sounds are originally in

1D format, converting them into 2D may leave out some subtle features and cause the

loss of the ability to investigate small differences.

3.3.2 One-dimensional Convolution Recurrent Neural Network (1DCRNN)

Inspired by the previously mentioned SEDNet from [28], the authors designed

a similar architecture but removed lmbe and replaced 2D CNN blocks with 1D CNN

blocks. The 1D CNN block is similar to the 2D variation but changes from 2D convolu-

tion to 1D, and the same logic is applied for the max pooling layer.

By removing lmbe feature extraction, our model receives the input waveform

directly without frequency extraction. Since the lmbe ignores the fine-grain detail of the

input features, the authors believe the model might gain some insight from these fine-

grain features. Also, the hyperparameters in the lmbe are removed from the equation.

Figure 3.6: An architecture of 1DCRNN. Activation function omitted.
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CHAPTER 4
RESULT

4.1 Experimental Setup

4.1.1 Data Preparation

Mosquito Wingbeat Sound

MIRU lab provided mosquito wingbeat sounds from twomajor sources. The first

source used the same method of collection as [21], which recorded the wingbeat sound

using a Studio Behringer (Primo EM172) in the mono channel, and 24 bits depth with

a 96kHz sampling rate at a researcher’s home (without noise proof wall). The second

sourcewas collected recently with the samemicrophone setting but recorded in the studio

room (without noise-proof wall). This marks these two sources with significant differ-

ences in sound quality and characteristics. The sounds come in multiple cut files, and

some belong to the same recordings of mosquitos. The authors ensure that each source

and recording are allocated to the training, testing, and validating set with balance.

The number of wingbeats cut files from the MIRU lab is shown in the table 4.1

and 4.2. The authors encountered highly imbalanced data on Habitat A, specifically

on class A.Minimus.M and An.Minimus.F. While other classes can be allocated to the

training set, testing set, and validating set with balance on the data source, these two

classes have a low quantity, making it impossible. Therefore, the authors stratify the

chance of each class being chosen in creating training, validating, and testing datasets.

Table 4.1: The quantity and duration of wingbeats cut files from MIRU first Source.

Mosquito Species Male(files) Female(files)
An. Dirus 178 152
Cx. Quin 113 120

Ae. Albopictus 218 128
Ae. Aegypti 152 166
An. Minimus 50 37
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Table 4.2: The quantity and duration of wingbeats cut files from MIRU second Source.

Mosquito Species Male(files) Female(files)
An. Dirus 220 286
Cx. Quin 370 385

Ae. albopictus 271 280
Ae. Aegypti 300 303
An. Minimus 30 33

Environmental Sound

The authors obtain three types of environmental sounds in this project: MIRU,

Humbug, and Silence.

1. Type 1 comes from the MIRU lab, which provided 10 files of 1851 seconds, con-

sisting of birds, motorcycles and talking noises. These represent urban noises

found in houses and cities, where mosquitoes are likely to live among humans.

2. Type 2 comes from HumBugDB [1]. To supply additional environmental sound,

the authors also use data from HumbugDB, a public dataset consisting of sounds

from mosquito and their environment collected from multiple locations world-

wide. HumbugDB offers mosquito sounds of various origins as well as environ-

mental sounds. It was decided to use only their environmental sounds and exclude

the mosquitos as their data collection method differs largely from ours. The au-

thors kept the environment sounds longer than 10 seconds and used a sampling rate

of 8000. There are 649 files with a duration of 38,884.6 seconds. The background

noise includes walking, talking, breathing, periodic, and static noise.

3. Type 3 is silence or just simply no noise. Aiming to let the model learn pure

mosquito sounds and noise, the authors added silence to the environmental sound

dataset. As a result, the model would be able to understand the characteristics of

each mosquito class without any interrupting noises. In practice, the author uses

random Gaussian noise with low mean and low std. to simulate the low amplitude

white noise since some algorithms cannot work with an array of all zeros.
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4.1.2 Simulating the Habitats of Mosquito

To simulate the actual habitat of mosquitos, the authors prepared two separate

settings to represent how mosquitos are found in real locations. The settings are called

Habitat A and Habitat B, representing species commonly found together in one location.

1. Habitat A (Anopheles + Culex): This setting simulates a mixed-species environ-

ment where Anopheles and Culex mosquitoes coexist. The habitat consists of 6

classes: Culex quinquefasciatus Male and Female, Anopheles Dirus Male and Fe-

male, and Anopheles Minimus Male and Female.

2. Habitat B (Aedes + Culex): This represents a scenario where Aedes and Culex

genera are present. The habitat consists of 6 classes: Culex quinquefasciatus Male

and Female, Aedes Aegypti Male and Female, and Aedes Albopictus Male and

Female.

These settings were created to evaluate the model under species compositions.

4.1.3 Dataset Creation

The authors created the dataset by randomly overlaying mosquito sounds onto

the environment noises to simulate the natural setting. The gain factor G is uniformly

random in range [0.01, 0.1] for each wingbeat overlay to simulate the various ranges of

noisy environments. The recordings aremono channel andwere down-sampled to 8 kHz.

8 kHz performs better on the deep learning model than 96 kHz, so the sr = 8000 [21].

A synthesized file is 10 seconds long (t = 10) with each data point being 1 second apart

(tseg = 1) and limited to having only 1 or 2 mosquitoes with no overlapping between

mosquitoes.

When choosing environmental files for dataset creation, the authors ensured that

each environmental sound was allocated with balance in the training, testing, and vali-

dating set. As for mosquito sounds, the authors also ensured that mosquito sounds from

the same recording were used in the same dataset. The cut files from the same recording

(the same mosquito) might have been too similar, so they do not reflect real-world prac-

tice. Therefore, one mosquito recording cannot be used in multiple datasets for training,

testing, or validation.
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In the overlaying of mosquito sounds and environmental sounds, the files were

randomly chosen based on their quantity in the data pool. The mosquito classes that

were most populated are more likely to be included in the dataset. The problem was that

imbalanced data was handled by incorporating class weights while training the model.

Class weights are calculated by the inverse of a class’s quantity among total files, as

shown in equation 4.1.

cwcls =
sccls∑

j∈classes scj
(4.1)

sccls =
1

number of cut files in class cls
(4.2)

While habitat B is trained regarding class weights to handle imbalanced data, the

authors used anothermethod for habitat A. The files in low-populated classes were forced

to have more probability of being chosen while generating a dataset using stratified sam-

pling between each mosquito class. This was to account for the highly imbalanced data,

especially An.Minimus.F and An.Minimus.M.

Training, validating, and testing datasets were prepared for each habitat sepa-

rately. The training set lasted 20,000 seconds. The authors constructed the dataset with

25%overlayed Type 1 environmental sound, 25%overlayed Type 2 environmental sound

and 50% overlayed 25% overlayed Type 3 environmental sound.

The validating and testing set lasted 3,600 seconds and had the same settings as

the training sets. They were fixed throughout all training loops and evaluations.

4.2 Model Training

Every model was trained with the Adam optimizer at a learning rate of 0.001 and

binary cross entropy loss as a loss function with batch size 32 [48]. They were trained for

1,000 epochs with early stopping if the validation error rate did not improve further for

50 epochs. The model was trained separately in each habitat. For habitat B, the model

was trained with corresponding class weights.
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4.2.1 Data Augmentation

The dataset was augmented by regenerating the training dataset every 30 epochs

of training loops. This newly generated dataset employed the same characteristics as the

original one, using mosquito and noise data from the same pool of sources as described

in the section Data Preparation. The differences are apparent in the randomized choice

of noises and mosquito sounds. As one is generated, the algorithm uses the following

techniques:

• Randomcombination of noises andmosquitos: a noise and 1-2mosquito sounds

are chosen randomly from the original training pool.

• Amplitude variation: Each mosquito sound is applied with a random gain factor

ranging from 0.01 to 0.1.

• Overlay sounds: Mosquito sounds are overlayed onto noise with randomized

timestamps.

One dataset is used for only 30 epochs, and a new one is generated. This creates

a wider learning material for the model, allowing it to learn the mosquito sounds under

various noises and amplitudes.

4.2.2 Threshold Optimization

As the output of model prediction is in the form of probability, a threshold is

needed to convert it into a prediction of the presence and absence of mosquitoes. A

general threshold is 0.5, where values less than 0.5 are interpreted as absence and vice

versa. In this project, the authors determined the optimal threshold that yielded the high-

est detection F1 score on the validation set as shown in equation 4.3. The ŷ is a model

prediction on the validation set. This optimal threshold is then used on the testing set.

Each model’s threshold is different as they are chosen by this optimization method.

threscls = argmax
thres∈[0,1]

F1(y[t, cls], ŷ[t, cls] > thres) (4.3)
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4.3 Evaluation Metrics

Unlike monophonic SED, polyphonic SED has no widely accepted metrics since

polyphonic SED allows the prediction to be correct in one class and wrong in another

class at the same time [49]. The authors used a segment-based method, namely evenly

separating the whole signal duration into a small segment.

The authors experimented with 2 metrics proposed in [28] and [49], which are

the Error rate (ER), and F1-score (F1). Equation 4.4 shows the calculation of the error

rate.

ER =

∑N
t=1 st +

∑N
t=1 it +

∑N
t=1 dt∑R

t=1 at
(4.4)

Where st is the substitution error of segment t, it is the insertion error of segment t, dt is

the deletion error of segment t, at is, and at is the number of events in segment t. Notice

that the ER is in the range [0,∞) as the number of errors can be as much as the number

of data points in the label. If the ER is high (especially if it goes over 1), it also means

that the model predicts more than it should. However, if the ER is low (around 0), the

model prediction barely has an error.

Since the model prediction is a binary classification of each class, the authors also

use F1-Score tomeasure the class-wise classification performance and overall, which can

be calculated as follows.

P =
TP

TP + FP
(4.5)

R =
TP

TP + FN
(4.6)

F1 =
2 · P ·R
P +R

(4.7)

Where TP is true positive (predict correctly), FP is false positive (predict where

it should not), and FN is false negative (no prediction where it should).

However, the authors also interpreted an event as mosquito wingbeat detection

(not classification). They assumed that if any of the classes had a score over the threshold

thres, then the authors interpreted that the model would detect an event using equation

4.9 and create a detection label using equation 4.8.
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ydet[t] = max
cls∈classes

y[t, cls] (4.8)

ŷdet[t] = ( max
cls∈classes

ŷ[t, cls]) > thres (4.9)

Then, the authors can calculate the F1 score on ydet and ŷdet for detection perfor-

mance.

4.4 Results

After developing the 1DCRNN model and outlining its processing capabilities

and architecture, it is essential to compare its performance to the state-of-the-art SEDNet

model presented in Section 3.3.1 of Chapter 3 (Model Architecture). This comparison

aims to identify the performance of 1DCRNN relative to the SEDNet to provide insights

into the advancements made in sound event detection.

To facilitate unbiased experiments, the following conditions were adhered to:

• Settings Parameters: The configuration of both models, including the hyperpa-

rameters such as the learning rate, batch size, the number of epochs, and the early

stopping condition, was kept constant.

Differences in the computational environment are duly noted:

• SEDNet Training and Evaluation:SEDNet was trained and evaluated on a desk-

top computer equipped with an NVIDIA GeForce RTX 3090 GPU.

• 1DCRNN Training and Evaluation:In contrast, 1DCRNN utilized GPU V4 of

Google Colab for its computations.

4.4.1 Find the best settings

The authors needed to find the optimal configuration parameters for the SED-

Net and 1DCRNN models to maximize their performance in sound event detection. It

comprehensively describes the experimental setup, emphasizing the significance of the

number of mel coefficients (N mels), Data augmentation, and Threshold Optimization.
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The tables below present the results of the experiments for the SEDNet model

across two distinct habitats, illustrating how varying the number of mel coefficients (N

mels) affects the models’ performance.

Table 4.3: Classification and Detection Performance of SEDNet in different habitats on
varying the number of mel coefficients (N mels).

(a) Experiment results in Habitat A

Habitat A Results

Model N mels F1 ER Precision
classify

Recall
classify

F1
detection

Precision
detection

Recall
detection

SEDNet 40 0.525 0.623 0.594 0.471 0.788 0.888 0.708
128 0.536 0.592 0.593 0.489 0.823 0.908 0.752

(b) Experiment results in Habitat B

Habitat B Results

Model N mels F1 ER Precision
classify

Recall
classify

F1
detection

Precision
detection

Recall
detection

SEDNet 40 0.506 0.666 0.558 0.463 0.776 0.852 0.713
128 0.506 0.651 0.546 0.472 0.805 0.864 0.754

While comparing the results within Habitat A, themodel configuredwith 128mel

bands showed improvement in several key performance metrics over the configuration

with 40 metal bands. For instance, the F1 score for classification improved from 0.525

to 0.536, and the Error Rate (ER) decreased from 0.623 to 0.592. This trend is also

consistent with the detection metrics, where both Precision and Recall scores showed

notable increases.

A similar pattern is observed in Habitat B, where the model with 128 mel bands

again outperforms the 40 mel bands configuration. The F1 score remains constant at

0.506, but A similar pattern was observed in Habitat B, where the model with 128 mel

bands again outperformed the 40 mel bands configuration. The F1 score remained con-

stant at 0.506, but the Error Rate decreased from 0.666 to 0.651. More importantly, the

precision in detection tasks jumps from 0.852 to 0.864 and recall from 0.713 to 0.754,

underscoring an overall improvement in model accuracy.

Table 4.4 shows the result between the threshold settings and the performance

metrics of the SEDNet in different habitats. In Habitat A, the model’s performance with

a threshold of 0.374 showcased an enhanced F1 score of 0.559 compared to 0.536 at
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a threshold of 0.5, suggesting that a lower threshold may be more optimal in scenarios

characterized by this specific habitat’s acoustic properties. Notably, the Recall in detec-

tion at the lower threshold improved remarkably to 0.842 from 0.752, underscoring a

superior capability to correctly identify sound events without increasing the number of

false positives, as evidenced by the Precision in detection slightly decreasing from 0.908

to 0.878.

Similarly, in Habitat B, adjusting the threshold to 0.400 led to an improvement in

both the F1 score and recall in detection, moving from 0.506 to 0.519 and from 0.754 to

a significant 0.908, respectively. This adjustment indicates that the model becomes more

sensitive to detecting true positives without overly compromising on precision, though

the Error Rate did increase from 0.651 to 0.736, which may indicate a trade-off between

sensitivity and error tolerance in more challenging acoustic environments.

Table 4.4: Classification and Detection Performance of SEDNet in different habitats on
Threshold optimization.

(a) Experiment results in Habitat A

Habitat A Results

Model Threshold F1 ER Precision
classify

Recall
classify

F1
detection

Precision
detection

Recall
detection

SEDNet 0.5 0.536 0.592 0.593 0.489 0.823 0.908 0.752
0.374 0.559 0.660 0.540 0.579 0.860 0.878 0.842

(b) Experiment results in Habitat B

Habitat B Results

Model Threshold F1 ER Precision
classify

Recall
classify

F1
detection

Precision
detection

Recall
detection

SEDNet 0.5 0.506 0.651 0.546 0.472 0.805 0.864 0.754
0.400 0.519 0.736 0.475 0.571 0.876 0.847 0.908

These experiments suggest that careful optimization of the detection threshold

as further discussed in Section 4.2.2 is important for the improvement of the SEDNet

model to perform optimally under varying environmental conditions.

Table 4.5 contrasts the performance metrics of the SEDNet model between the

original training model and a modified model that involves data augmentation every 30

epochs. In Habitat A, the original model achieved a significantly higher F1 score for clas-

sification at 0.559 compared to 0.467 post-augmentation. Interestingly, the augmented

model in Habitat A showed an improved Error Rate (ER) at 0.467, down from 0.660,
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and a higher Recall in detection at 0.900, up from 0.842. These improvements indicate

that overall classification accuracy decreased.

Similar trends are observable in Habitat B. The augmented model’s F1 score

decreased slightly from 0.519 to 0.502, and the ER worsened from 0.736 to 0.811. How-

ever, similar to Habitat A, the Recall in detection increased from 0.908 to 0.920.

Table 4.5: Classification and Detection Performance of SEDNet in different habitats on
Data Augmentation.

(a) Experiment results in Habitat A

Habitat A Results

Model Thres
hold F1 ER Precision

classify
Recall
classify

F1
detection

Precision
detection

Recall
detection

Original 0.374 0.559 0.660 0.540 0.579 0.860 0.878 0.842
Augmented 0.451 0.467 0.467 0.436 0.503 0.859 0.821 0.900

(b) Experiment results in Habitat B

Habitat B Results

Model Thres
hold F1 ER Precision

classify
Recall
classify

F1
detection

Precision
detection

Recall
detection

Original 0.400 0.519 0.736 0.475 0.571 0.876 0.847 0.908
Augmented 0.397 0.502 0.811 0.445 0.576 0.867 0.820 0.920

Evaluations were completed in two settings, one for the classification perfor-

mance and another for detection performance. The classification evaluations are also

computed separately between classes, identifying the models’ performance with regards

to different species and sexes. The evaluation methods were conducted separately be-

tween habitats A and B to adhere to the mosquito species found in real environments.

The proposed 1DCRNNmodel used the optimal threshold of 0.133 on habitat A,

and 0.148 on habitat B. SEDNet used a threshold of 0.374 on habitat A and 0.400 on

habitat B.

4.4.2 Classification Performance

Table 4.6 shows the classification performance across all datasets. The proposed

model achieved an F1 score of 0.537 on the classification task across all classes for

habitat A and 0.603 for habitat B. In habitat B, the proposed model achieved a higher

F1 score than SEDNet. On the other hand, SEDNet outperformed 1DCRNN in habitat
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Table 4.6: Classification performance

Model F1 ER
SEDNet 0.559 0.660
1DCRNN 0.537 0.666
(a) Habitat A (An + Cx)

Model F1 ER
SEDNet 0.529 1.036
1DCRNN 0.603 0.648
(b) Habitat B (Ae + Cx)

A. Even though each model overcame the others in different habitat settings, the ER in

SEDNet was noticeably higher than 1DCRNN for habitat B.

Table 4.7: Classification performance per class. The bold font represents the best
number in the category.

(a) Classification performance per class in Habitat A

Per-Class F1
Model An.Mini.M An.Diru.M Cx.Quin.M An.Mini.F An.Diru.F Cx.Quin.F
SEDNet 0.000 0.591 0.458 0.070 0.520 0.772
1DCRNN 0.000 0.423 0.465 0.353 0.566 0.671

(b) Classification performance per class in Habitat B

Per-Class F1
Model Ae.Aegy.M Ae.Albo.M Cx.Quin.M Ae.Aegy.F Ae.Albo.F Cx.Quin.F
SEDNet 0.181 0.360 0.453 0.572 0.514 0.756
1DCRNN 0.391 0.449 0.532 0.591 0.759 0.773

Observing the performance from each class in habitat A separately (see Fig-

ure 4.7a), the model mostly outperformed SEDNet. The model had a higher F1 score

on the following classes: Cx.Quin.M, An.Mini.F, and An.Diru.F However, for classes

An.Minimus.F and An.Minimus.M, both models showed a low performance, especially

on An.Minimus.M, for which both were unable to be classified. The authors suggest that

this class’s imbalanced data caused this problem. Since the testing set of this class expe-

rience a high shortage of data with only a few samples to be evaluated, the performance

dropped to zero. It is worth noting that in class An.Minimus.F, the model was able to

achieve a 0.353 F1 score, compared to 0.070.

As for the per-class evaluation results in habitat B, our 1DCRNN model showed
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an outstanding classification performance compared to SEDNet (see figure 4.7b). Model

1DCRNN outperformed SEDNet in every class, for Class Ae.Albopictus.F was where

the 1DCRNN model achieved a much higher F1 score than SEDNet with a difference of

0.183.

As for the per-class evaluation results in habitat B, our 1DCRNN model showed

an outstanding classification performance compared to SEDNet (see figure . Model

1DCRNN outperformed SEDNet in every class, For Class Ae.Albopictus.F is where

the 1DCRNN model achieved a much higher F1 score than SEDNet, with a difference

of 0.183.

4.4.3 Detection Performance

The following Figure 4.1 compares the detection performance of SEDNet and

1DCRNN on habitats A and B.

Figure 4.1: Detection performance

(a) Habitat A (An + Cx)

Model F1 Precision Recall
SEDNet 0.860 0.878 0.842
1DCRNN 0.877 0.940 0.822

(b) Habitat B (Ae + Cx)

Model F1 Precision Recall
SEDNet 0.876 0.847 0.908
1DCRNN 0.936 0.967 0.906

In terms of detection performance, the proposed model demonstrates its great

ability to detect classes, exceeding baseline on both habitat settings. In habitat A, 1DCRNN

overcame SEDNet slightly in terms of F1 score. With regards to precision and recall,

the model proved to possess a much more precise capability to identify the correct class

with a precision of 0.940, compared to 0.878 from SEDNet. This is also true in habitat

B, where the precision of the proposed model was much higher than the baseline. Al-

though the recall scores of the 1DCRNN model were slightly lower than SEDNet, the

high precision compensates for it, resulting in a higher F1 score.
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4.5 Discussion

The comparative results between 1DCRNN and SEDNet in the previous section

provided insight into the performance of each model across the two habitats from detec-

tion and classification points of view.

Regarding detecting mosquito sounds, it is clear that the proposed 1DCRNN

model outperformed SEDNet in habitats A and B. The higher F1 and precision scores

show that the 1DCRNNmodel could better recognize mosquito sounds among the inter-

rupting noises than the baseline. Even though the recall scores for the 1DCRNN model

were lower, the differences were too subtle to affect the overall performance. The result

showed that 1DCRNN is preferable for mosquito detection tasks.

For the classification task, the results are competitive between SEDNet and 1DCRNN

models. SEDNet showed better results in habitat A while 1DCRNN outperformed it in

habitat B — the classification result for species Cx.Quin, present in both habitats does

not show a high difference between the proposed model and the baseline — the class

of An.Dirus.M is where SEDNet overcame 1DCRNN by a high F1 score. On the other

hand, 1DCRNN also highly outperformed the baseline on Ae.Albopictus.F class.

This clear separation of performance for each habitat suggests that each model

can be deployed in different locations based on the species of mosquitos in the area.

Using each model on its specialized habitats will allow them to maximize performance

and give the best results with regards to classification.

One interesting part is the species An.Minimus, where the imbalance data issue

damages the performance of both models. Despite this issue, the 1DCRNN model was

able to classify An.Minimus.F quite well on limited data, achieving an F1 score of 0.353,

compared to SEDNet, which cannot classify it. This result indicates that 1DCRNN may

be more suited to use in imbalanced settings, where the data is scarce.
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